Теория Задачи Инструменты Социум Интересно

Личный Кабинет

Войдите или зарегистрируйтесь
Лаборатория LMatrix
Лаборатория Lmatrix занимается оптимизацией транспортных задач. Сюда можно отнести задачи поиска кратчайшего пути в ориентированных графах, применимые как к масштабам города и страны, классическую задачу обхода (коммивояжера), задачи оптимизации доставки грузов, задачи трехмерной упаковки.
Новости проекта

31.05.2013 - Универсиада. Маршрут по России и Татарстану. Официально и математически.

Огонь Универсиады приближается к финишу в Казани, но прежде пройдет по 43 городам республики Татарстан. Все об маршрутах огня в нашем анонсе.

Тематические статьи

26.07.2013 - Монитор в автомобиле будет дублировать экран смартфона

Водители смогут увидеть точную копию экрана своего смартфона на мониторе бортовой системы автомобиля. О сотрудничестве в этом направлении договорились разработчик ПО для удаленного управления устройствами RealVNC и производитель процессоров Texas Instruments.

29.03.2013 - Facebook на днях анонсирует собственный смартфон на Android

На следующей неделе Facebook собирается представить собственный смартфон с кастомизированной версией Android, утверждают источники. Ранее глава компании Марк Цукерберг опровергал слухи о выпуске собственного смартфона.

29.03.2013 - Основатель Facebook М.Цукерберг создает политическую организацию

Основатель социальной сети Facebook Марк Цукерберг создает политическую организацию, которая займется такими вопросами, как реформа образования, иммиграция и научные исследования, передает Associated Press со ссылкой на анонимный источник.

Транспортная задача

18 марта 2011 года в 17:21   Просмотров: 8432

Транспортная задача (Задача Монжа — Канторовича) — задача об оптимальном плане перевозок продукта (-ов) из пунктов отправления в пункты потребления. Разработка и применение оптимальных схем грузовых потоков позволяют снизить затраты на перевозки. Транспортная задача является по теории сложности вычислений NP-сложной или входит в класс сложности NP. Когда суммарный объем предложений (грузов, имеющихся в пунктах отправления) не равен общему объему спроса на товары (грузы), запрашиваемые пунктами потребления, транспортная задача называется несбалансированной.

 Постановка задачи Транспортная задача (классическая) — задача об оптимальном плане перевозок однородного продукта из однородных пунктов наличия в однородные пункты потребления на однородных транспортных средствах (предопределённом количестве) со статичными данными и линеарном подходе (это основные условия задачи). Для классической транспортной задачи выделяют два типа задач: критерий стоимости (достижение минимума затрат на перевозку) или расстояний и критерий времени (затрачивается минимум времени на перевозку).

История поиска методов решения, Проблема была впервые формализована французским математиком Гаспаром Монжем в 1781. Основное продвижение было сделано на полях во время Великой Отечественной войны советским математиком и экономистом Леонидом Канторовичем. Поэтому иногда эта проблема называется Транспортной задачей Монжа-Канторовича. Методы решения Классическую транспортную задачу можно решить симплекс-методом, но в силу ряда особенностей ее можно решить проще (для задач малой размерности). Условия задачи располагают в таблице, вписывая в ячейки количество перевозимого груза из в груза , а в маленькие клетки — соответствующие тарифы .

Итерационное улучшение плана перевозок: Нахождение опорного плана. Затем требуется определить опорный план и путем последовательных операций найти оптимальное решение. Опорный план можно найти следующими методами:

 

«северо-западного угла» (нем.),

«наименьшего элемента»,

двойного предпочтения

и аппроксимацией Фогеля (нем.).

 

Метод северо-западного угла (диагональный) На каждом этапе максимально возможным числом заполняют левую верхнюю клетку оставшейся части таблицы. Заполнение таким образом, что полностью выносится груз из или полностью удовлетворяется потребность . Метод наименьшего элемента Одним из способов решения задачи является метод минимального (наименьшего) элемента Его суть заключается в сведении к минимуму побочных перераспределений товаров между потребителями. Алгоритм: Из таблицы стоимостей выбирают наименьшую стоимость и в клетку, которая ей соответствует, вписывают меньшее из чисел. Проверяются строки поставщиков на наличии строки с израсходованными запасами и столбцы потребителей на наличие столбца, потребности которого полностью удовлетворены. Такие столбцы и строки далее не рассматриваются. Если не все потребители удовлетворены и не все поставщики израсходовали товары, возврат к п.1, в противном случае задача решена.

Итерации После нахождения опорного плана перевозок, нужно применить один из алгоритмов его улучшения, приближения к оптимальному. Метод падающего камня (нем.) Метод потенциалов (нем.).

Решение с помощью теории графов Затем рассматривается двудольный граф, в котором пункты производства находятся в верхней доле, а пункты потребления — в нижней. Пункты производства и потребления попарно соединяются рёбрами бесконечной пропускной способности и цены за единицу потока . К верхней доле искусственно присоединяется исток. Пропускная способность рёбер из истока в каждый пункт производства равна запасу продукта в этом пункте. Цена за единицу потока у этих рёбер равна 0. Аналогично к нижней доле присоединяется сток. Пропускная способность рёбер из каждого пункта потребления в сток равна потребности в продукте в этом пункте. Цена за единицу потока у этих рёбер тоже равна 0. Дальше решается задача нахождения максимального потока минимальной стоимости (mincost maxflow). Её решение аналогично нахождению максимального потока в алгоритме Форда—Фалкерсона. Только вместо кратчайшего дополняющего потока ищется самый дешёвый. Соответственно, в этой подзадаче используется не поиск в ширину, а алгоритм Беллмана—Форда. При возврате потока стоимость считается отрицательной.

Алгоритм mincost maxflow можно запускать и сразу — без нахождения опорного плана. Но в этом случае процесс решения будет несколько более долгим. Выполнение алгоритма mincost maxflow происходит не более чем за операций. ( — количество рёбер, — количество вершин.) При случайно подобраных данных обычно требуется гораздо меньше — порядка операций. При решении несбалансированную транспортной задачи, применяют прием, позволяющий сделать ее сбалансированной. Для этого вводят фиктивные пункты назначения или отправления. Выполнение баланса транспортной задачи необходимо для того, чтобы иметь возможность применить алгоритм решения, построенный на использовании транспортных таблиц.

Оставить комментарий

Пожалуйста, введите символы, показанные на рисунке.

Примеры решений задачи коммивояжера (TSP)
design by lmatrix
О проекте | Написать письмо | Ссылки | Литература | Карта сайта